PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Quasistatically controlled bianisotropic media: Dual composite materials
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A material concept of the electrostatically controlled bianisotropic matel#I8BMs) is introduced. Com-
posite materials are based on electrically small piezoelectric resonators with an aperture in a perfectly con-
ducting surface. The ECBMs are dual composite materials with respect to the magnetostatically controlled
bianisotropic materials conceptualized recently by the present a(i8t063-651X%98)11512-X

PACS numbeps): 41.20—-q, 03.50.De, 62.65:k, 81.05.Zx

I. INTRODUCTION Il. CURL-FREE-FIELD BIANISOTROPIC COMPOSITES:
A CONCEPT OF DUALITY

The electromagnetics of bianisotropic materials holds the

key to many important technologies. In microwaves, thes,‘?nedia may be accompanied by vortgx,H, and potential

bianisotropic materials are composite materials. The MalRE | 1, electric and magnetic fields, so that the total fields are
feature of the known bianisotropic compositeased on he- represented as

lices or() particles is the first-order role played by the size

parameter&a in the emergence of the magnetoelectric prop- E=E.+E,, H=H.+H,, (1)
erties; herea is the particle size anklis the wave number in

the host material. For this reason, the electric and magnetighere

fields are not curl-free away from the particle and the quasi-

In a general case, the electromagnetic wave processes in

static effective-medium theories may be applicable only for E,=—Vo, Hy=—Vy,

dilute composites. In other words, such media are modeled 2
as a gas of scatterers. Much needs to be done, however, V.E.=0, V-H.=0.

before these bianisotropic composites come to be used in

microwave applicationfl—3]. The scalar electric and magnetic potentigisand ¢ are

A different class of bianisotropic materials has been concaused by electric and magnetic charges, respectively, in ac-
ceptualized recently by the present author. These are particaordance with the Poisson equatighe Coulomb gaugé8].
late composites based on small ferromagnetic resonators The quasistatiopotentia) wave propagation may take
with a special-form surface metallizatidd,5]. The main  place in media. These potential waves are due to short-length
point is that the dyadic polarizabilities of every bianisotropicinteractions between adjacent polarization vectoragneto-
particle are obtained by solving magnetostatic problems andtatic waves in ferromagnetics, elastodynamic quasielectro-
the particle may be considered as a glued pair of felec-  static waves in piezoelectricer due to Coulomb interaction
tric and magneticdipoles. Since a bianisotropic particle is between the mobile chargéspace-charge wavesBarybin
described guasistatically and the electric and magnetic fieldsharacterized such media with potential-wave propagation as
are curl-free at every point away from the particle, theactive polarized medi§9]. In the classical description, one
effective-medium theories for dense homogenized materialef the main reasons why a medium can support the propaga-
may be successfully usdé]. In this case, we have “solid tion of potential waves arises from the kinematics of par-
state matter” in comparison to “gas matter” based on aticles. There are, in particular, ac magnetization motion in
composition of helices of) particles. A vast number of fun- ferromagnetic$10,11 or the particle displacement in piezo-
damental problems and applicatiofvgaveguide and resona- electrics[12,13. Due to the mechanical processes, we have
tor structures, antenna substrates,)eéce emerging from additional (in comparison to the energy balance in “pure”
theoretical and experimental works based on these composigdectromagnetic wavesnechanisms of storage and exchange
materials[4,5]. of energy. In nature, we have gquasimagnetostaWicx

Lakhtakia suggested to name media described initially inr=0) or quasielectrostatic WX E=0) waves. Thus the
[4] as magnetostatically controlled bianisotropic materials potential-wave propagation in active polarized media is ac-
(MCBMs) [7]. Now the question arises, can one conceive oftompanied by curl fields. There are curl electric field in
dual composite materials that may be narettrostatically —quasimagnetostatic waves in ferromagnetics and curl mag-
controlled bianisotropic material§ECBMs)? In this paper netic field in quasielectrostatic waves in piezoelectrics. The
we will show that ECBMs may be realized based on elastoquasistatic-wave propagation may also be accompanied by
dynamic quasielectrostatic oscillations in piezoelectric resosurface currents: electric surface current in quasimagneto-
nators with an aperture in a perfectly conducting surfacestatic waves and magnetic surface current in quasielectro-
When the ECBMs are conceptualized together with thestatic waves. Obviously, bulk currents cannot take place
MCBMs, we can assert that a general class of dual quasisince a quasistatic description inside the current region is
tatically (magnetostatically and electrostaticallgontrolled  impossible. In our further consideration we will use the fol-
bianisotropic materials exists. lowing terms: magnetostatic waveMSWs) for potential
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Ferromagnetic Piezoelectric P= e Eext+ Aoy HeXt, M= e Eext+ Ay HeXt.

)

Metal

Dielectric To obtain the dyadic polarizabilitie@,e, @em, @me, and
@, one has to solve a problem of excitation of a piezoelec-
tric resonator by the externgéjiven) fields.
Piesoclectric Piezoelectric resonators with apertures are characterized
Ferromagnetic as structures with complex geometries. One of the ways to
Metal solve the excitation problem is a decomposition of a resona-
tor by waveguide sections and an analysis of excitation in
Dielectric these waveguide sections. In this paper we consider a piezo-
substrate electric resonator depicted in Fig(cl as a composition of
piezoelectric-waveguide sections. A similar decomposition
) @ was used in an analysis of bianisotropic particles in MCBMs
[4]. So the problem is reduced to an analysis of mode exci-
FIG. 1. Dual bianisotropic particles. tation in piezoelectric waveguides by the external electric
and magnetic fields. When the problem of the piezoelectric
waves in ferromagnetics and electrostatic wallESW9 for ~ waveguide excitation by the external fields is solved, further
potential waves in piezoelectrics. generalization for piezoelectric resonators may be realized.
Let us consider a small ferromagnetic resonator with a
special-form region of surface metallization. When quasi-
static oscillations due to the MSW process take place, the IV. MODE EXCITATION IN PIEZOELECTRIC

(a) ©

resonator may have properties of a bianisotropic particle WAVEGUIDES BY THE EXTERNAL FIELDS
with the curl-free fields outside the particle. Every bianiso- _ _ o _
tropic partic]e is a g|ued pair of thrnagnetiC and e|ectrjc In different typeS of Wavegwdes described in the literature

dipoles: The magnetic dipole is due to the ferrite body andelectromagnetic[15,16, MSW [10,11, and acoustic
the electric dipole is due to the metalization region. Bianiso{12,13), normal mode excitation is analyzed as excitation by
tropic materials composed of MSW ferromagnetic resonatore external(givern) electric and magnetic currents and

were described and analyzed[ii5]. The theoretical analy- charges. For some waveguide problems, another type of ex-
sis was based on the theory of excitation of MSwoCitation may be considered however. There is mode excita-

waveguideg14]. tion due to the externdliven electric and magnetic fields.

Now let us consider a small piezoelectric resonator with! his kind of excitation problem is especially important in our
an aperture in a perfectly conducting surface. We can asse¢fiSe when induced dipole moments of a bianisotropic par-
a priori that when quasistatic oscillations due to the ESwticle are defined. Quasistatically controlled oscillating pro-
process take place, the resonator may have properties of €sses in bianisotropic particles of the MCBMs or ECBMs
anisotropic particle with a glued pair of two dipoles. In this have scales of space variations much less than the corre-
case, the electric dipole is due to the piezoelectric body an8Ponding scales of the external electric and magnetic fields.
the magnetic dipole is due to an aperture in a metallic screer.nis makes it possible to distinguish the intrinsic quasistatic

Our conceptual analysis enables us to represent two typdgode fields and the externégiven) electric and magnetic
of dual quasistatiémagnetostatic and electrostatianiso- ~ fields. o _ _
tropic particles. In Fig. 1 we can see magnetostatic bianiso- T0 solve an excitation problem in a waveguide, one can
tropic particles based on ferromagnetic resonators with suliSe @ complete functional basis of eigenmodes of a nonex-
face metallic stripgFigs. 4a) and 4b)] [4,5] in comparison C|_ted waveguide. To obtain this functional basis, a corr_ect
with electrostatic bianisotropic particles based on piezoelec€igenvalue problem has to be set up. Let steady-state time-
tric resonators with apertures in metallic screffigs. Xc)  harmonic €'") field variations along the longitudinalaxis
and Xd)]. One can compose two types of dual curl-free-fielgof a multilayered piezoelectric waveguide be described by
bianisotropic materials: the MCBMs and the ECBMs. Thus athe factore™ ”*. Based on the electro-magnetic and acoustic
careful analysis has to be made to show that electrostaticalffeld equations and piezoelectric constitutive relations

controlled bianisotropic particles may be realized. 12,13, one can write the eigenvalue equation for every
layerj of a piezoelectric waveguide. In the quasielectrostatic

approximation E=—V¢), two forms of the eigenvalue
equation in a piezoelectric waveguide are possible. One form
may be written as

Ill. ELECTROSTATICALLY CONTROLLED
BIANISOTROPIC PARTICLES

A piezoelectric resonator with an aperture in a perfectly
conducting surface is considered as a bianisotropic patrticle. _ _
Because of quasielectrostatghort-wavelengthoscillations ([G, 1V =y [RD[V]V=0, (4)
in a piezoelectric resonator, we can distinguish the intrinsic
quasielectrostatic mode fields and the extefgalen) fields.
Induced electriqp and magnetian dipole moments are re- where[G, ] is the differential-matrix operator andr,] is
lated to the external electrE®* and magnetidi® fields as  the matrix coefficient,
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—iwp v 0 0 (IM_ D =y[R,D[U]D =0, (10)
V0 LiesE iwdV 0 _ _ _ _ _
[G,]= r , where[M, ] is the differential-matrix operatofR,] is the
0 0 0 oV, -

0 o) (d) 10V, iw(eh) L matrix coefficient

®) —iwp YW 0 0
v i = .
0 ¥ o o m=| Ve Tles tled 2
vl o 0 0 0 i wd: lwe - —V X
_ s VvV, X 0
0 0 iwe: 0 0o v o 0
and[ V] is the vector function — V(s”) 0 0 0
\ 0 0 e&xXx 0
T
[V]= " (7)  and[U] is the vector function
D %
Here g, is the unit vector along the axsand V, and [U]= T (12)
V , - are the transverse gradient and divergence, respectively. E
In Egs.(5)—(7) we used designations from Auld’s bofk2]: H

S is the strain field,T is the stress fieldy is the particle _

velocity, andd is the piezoelectric strain constant. Other des-HereV, X is the transverse curl. _ _
ignations can be found ifl2]. Transverse and longitudinal ~ We consider Eqg4) and(10) as the eigenvalue equations
parts of the divergence of stre®™). T and V). T and of the main problem and will associate with these equations
transverse and longitudinal parts of the symmetric gradient'® €igenvalue equations of the conjugate problem

of the particle velocityV (v and V{"v are defined, respec-

G == V1=
tively, by the matrix coefficientsin Auld’s notation[12]) (G IV =HRDIVIV=0 (13
- 2 9 and
— 0 0 0 0 — o o
x % ([M, 19 =3[R N[T]P=0. (14)
J
vit=| 0 W 0 0 0 x| Now we define the following scalar products on the wave-
) 4 guide cross sections:
0 0 O W X 0
) ) L([GJ[V])‘J[V]*dS
0O 0 0O0O1 O
vh={o 0 0 1 0 Of, 8 :f{(—iwpv+V<i>.T)-T/*+(V§“v—inE:T
0O 01 0 O O s
- . 0. +iwd-Vé):T*—iw(V, -D)d* +[—iw(e) X(d:T)
IX +iwV, ¢+iw(e) D]-D*}ds (15)
J
0 5 © 0 0 0] and
0 o 0 00 -
_ — 0 0 1 f([M ][U])O[U]*ds=f[(—iwpv+V(”~T)~\7*
(L) — i — L
V. o 0 &i =0 1 o (9) s s
y 100 +(ViV—iwSE:T+iwd-E): T*
o o (0 0 O] B
ax +Hiwd: T+iwe -E-V, XH)-E*
99 % +(V, XE)-A*]ds. (16)
Ly dx

Based on integration by parts taking into account neces-
Together with the form4), another form of the eigen- sary vector and tensor identiti€$2], one obtains from Egs.
value equation is possible (15 and(16)
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J ([GL1V[V])e[V]*ds= f [VIe([G,1V[V])*ds
Sj Sj

+P1([VLIV]Y) (17)

and

| U BT as= | Ui, 100 ) s
S, S

] ]

+Py([UL[0]%), (18

where for lossless media
[6.1V=-[G.1", (19)
[M.10=—~[M,]. (20)

P, and P, in Egs.(17) and (18) are adjoint bilinear forms.

Relations(19) and(20) show that function§V] and[U] are
also (together with functiongV] and[U]) included in the
domains of definition of operatofss, ] and[M ], respec-
tively.

For a regular nonexcited waveguide, one can represen

functions[V],[V] and[U],[U]
VI=[V1e™”, [V]=[V]e %, (21)

[Ul=[0Je 7, [O]=[0]e 7, 22)
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tric waveguides. Relation$23) and (24) are correct for
propagating, evanescefreactive, and complex modes. We
will use these relations to solve the problems of mode exci-
tation by the external electric and magnetic fields.

An analysis of excitation of piezoelectric-waveguide
modes by the external electric field is based on the solution
of an inhomogeneous equation

[GI[V]=[Ql,

where[G]=[G, ]+ (d/9z)[R,] and[ Q] is the vector func-
tion of sources. In our case of mode excitation by the exter-
nal fields,[Q] has the form

(29

0

0
Q= o |

i wEexc

(26)

where E®*¢ is the exciting electric field. This field differs
from the external electric fiel&®in Eq. (3) because of the
depolarizing effects. Finding the components of the depolar-
izing tensor represents a separate electrostatic problem.

t We will find a solution of Eq.(25) with the use of a
complete set of orthonormal membrane eigenfunctions

oo

vi=> a2V,
1

m=

(27)

Based on this representation, taking into account the or-
thogonality relation$23) and(24), one obtains the excitation

where the functions with carets describe the field distributiorbqu(,mOn for moden using Galerkin's methofi17,18

over the waveguide cross sectithe membrane functions

[12,13.

Let v, [Vi], and[U,,] be, respectively, the propagation

constant and the fields of mode We assume also that,,

dan(2) — lo exc, (U)y*
T+«ymam(z)—,\|—m; JSJE -(Bg)*ds. (28

[Va], and[U,] are, respectively, the propagation constant An analysis of mode excitation based on the oper@y
and the fields of moda. On the basis of homogeneous elec-and the vector-functiofivV] cannot be extended to a case of
tromagnetic and acoustic boundary conditions and conditionglode excitation by the external magnetic field. For this type
at infinity, one obtains zero adjoint bilinear forms in Eqs.0f source, we have to use the operatov]=[M, ]
(17) and (18). As a result, we have the mode orthogonality +(d/3z)[R,] and the vector functiopU]. One can see from

relation

(')’m+"5’:)Nmn:0- (23

For ym+7vx #0, two modes are orthogonal. If, however,
Ym+¥n =0, we will markn=mm and consider this mode as
the conjugate to modm. For conjugate modes, we have an

expression for the norfil2]

Nmszﬁ;; L_(—vg.fm—vm-f;ﬁiwﬁm&%
]
—iwD% ¢ -eds
=; fs_(—\7§1~fm—vm-f§n+ Emx A%
]

+E:XH,) eds. (24

the orthogonality relation&23) and(24) that only transverse
components of the electric and magnetic mode fields form a
complete set of the orthonormal eigenfunctions. Thus we
have
EV= 2 an(2)Ey ,
m=1 L
(29)

=S an(2AY
m=1 +
Since the fielcE is the potential field, the coefficients,(z)
in Eqg. (29) are the same as the coefficients in Egj7). It
becomes clear from the following consideration. Because of
Eq. (27), we have

oo

eV=2 a2y
1

m=

(30)

We have obtained the mode orthogonality relations based
on a rigorous statement of eigenvalue problems in piezoele@nd therefore
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Metal V. DYADIC POLARIZABILITIES OF PARTICLES

When a piezoelectric resonator with an aperture in a me-
tallic screen is composed by piezoelectric waveguide sec-

¢+ . . . ; . .
C ((f)) » tions, a problem arises concerning resolution of differential
Piezoelectric equations(28) and (37) in every waveguide section with
sewing together the fields on the boundaries between these
FIG. 2. Piezoelectric waveguide structure. sections. . _ _ _
One of the main goals of this paper is to show physically
% o and mathematically that realization of bianisotropic particles
EV==> an(2V,¢V=2> ay(z) Egﬁ . (31 based on piezoelectric resonators is possible, in principle. So,

m=1 m=1 we will not describe here any algorithm to calculate the
] ) ] _fields in a resonator and will suppose that such calculations

Let an aperture in a metallic screen of a piezoelectrihaye technological capability. When the fields are known,
waveguide take placgig. 2). In this case, waveguide eigen- one can find an electric polarization in a piezoelectric and

modes are accompanied by surface magnetic curigfits  obtain the dyadic polarizabilities. and @, and, thus, the

[16]. For modefh, for example, we can write induced electric dipole moment [see (3)] as a result of
(+0)  e(=0) ) integration of the electric polarization over the volume of a
X (B " —Ef ) =—ls (32  piezoelectric.

The dyadic polarizabilities,c and ., [Se€ Eq(3)] are
Heren, is the external normal to conto@, the contour found on the basis of integration of the surface magnetic
on the waveguide cross section. The surface magnetic cucharge density™) along the aperture. The surface magnetic
rents are located on this contolsee Fig. 2 In a piezoelec- charge density is related to the surface magnetic current den-

tric waveguide without dissipative losses we can write sity as
neX (Hz)=0. (33 Vs jiM=iwrM), (38)
We introduce a system of two fielddJ,] and [U,].  whereV:- is a surface divergence on the aperture. The sur-
Without bulk sources we have face magnetic current density is defined as
J XMV = (V) :'(M)’ 39
[M][ul,ﬂ=([lvu]+5[Rz])[ul,ﬂ=o. (34 AV VR = %9
where (V¢)(™) is a gradient of the potentiap on the slot
Based on Eq(34) we have region above and below the contoQr(see Fig. 2
Based on piezoelectric resonators with an aperture, bi-
. * . * anisotropic materials may be composed of randomly distrib-
Lj{([Mi][Ul]) [U2]* +[Ualo([M.][U])* }ds uted particles or as a three-dimensional regular array of par-

ticles. In the latter case, the Lorenz-Lorentz theory may be

d used to characterize material parameters of artificial bianiso-
— o * -
* Lj[(&z [RZ][Uﬂ) (U] tropic crystalg6,19].

+[U1]o(% [Rz][Uz]*)]dSZO. (35) VI. CONCLUSION
In this paper we have shown that together with recently
(Here we have omitted for simplicity the indgxfor [M ] conceptualized magnetostatically controlled bianisotropic
and[U,,].) materials, electrostatically controlled bianisotropic materials
Let the f|e|d[Ul] be the required field. In the presence of Can also .be introduped. So .We have dual curl-free-field bi-
the external magnetic field, the total magnetic field may beAnisotropic composite materials.
written as Our analysis of dyadic polarizabilities of a piezoelectric
bianisotropic particle was mainly based on the theory of ex-
) * ) citation of piezoelectric waveguides by the external electric
H,= > apn(z)H,+H (36)  and magnetic fields. It was supposed that when the theory of
m=1 waveguide excitation is obtained, further calculations of the
i . fields in a resonator have technological capability. To manu-
For the mode fielH,=an(z)Hr, we have the boundary facture the ECBMs, well-developed technology of piezoelec-
condition ne X (Hp)=0. Let the field[U,] be the field of i devices (for example, planar technology of surface-
modef that satisfies the boundary conditiof®) and(33).  acoustic-wave filter§20]) may be successfully used.
Based on Eq(34), we have as a result the excitation equa-  The MCBMs and the ECBMs are compositions of micro-
tion scopic oscillators and the quantum mechanical models can
be applicable to describe dynamical perturbations of a sys-
dam(2) +yan(z)= i f Hext (j(M)* g e (37) tem of these oscillations by an external action. Some discus-
dz Ymélm Nn Je S ' sions about the use of the quantum mechanical models for
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banisotropic particles are adduced[Ri]. One can distin- subject concerns the possibility to use a symmetry analysis to
guish geometrically symmerical bianisotropic partidlegys.  define energetic levels of every bianisotropic particle, similar
1(a) and Xc)] and bianisotropic particles with symmetry to an analysis applied for the classification of molecular
breaking (enantiomers [Figs. 1b) and Xd)]. So the main terms.
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