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Quasistatically controlled bianisotropic media: Dual composite materials
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A material concept of the electrostatically controlled bianisotropic materials~ECBMs! is introduced. Com-
posite materials are based on electrically small piezoelectric resonators with an aperture in a perfectly con-
ducting surface. The ECBMs are dual composite materials with respect to the magnetostatically controlled
bianisotropic materials conceptualized recently by the present author.@S1063-651X~98!11512-X#

PACS number~s!: 41.20.2q, 03.50.De, 62.65.1k, 81.05.Zx
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I. INTRODUCTION

The electromagnetics of bianisotropic materials holds
key to many important technologies. In microwaves, th
bianisotropic materials are composite materials. The m
feature of the known bianisotropic composites~based on he-
lices orV particles! is the first-order role played by the siz
parameterska in the emergence of the magnetoelectric pro
erties; herea is the particle size andk is the wave number in
the host material. For this reason, the electric and magn
fields are not curl-free away from the particle and the qua
static effective-medium theories may be applicable only
dilute composites. In other words, such media are mode
as a gas of scatterers. Much needs to be done, howe
before these bianisotropic composites come to be use
microwave applications@1–3#.

A different class of bianisotropic materials has been c
ceptualized recently by the present author. These are par
late composites based on small ferromagnetic resona
with a special-form surface metallization@4,5#. The main
point is that the dyadic polarizabilities of every bianisotrop
particle are obtained by solving magnetostatic problems
the particle may be considered as a glued pair of two~elec-
tric and magnetic! dipoles. Since a bianisotropic particle
described quasistatically and the electric and magnetic fi
are curl-free at every point away from the particle, t
effective-medium theories for dense homogenized mate
may be successfully used@6#. In this case, we have ‘‘solid
state matter’’ in comparison to ‘‘gas matter’’ based on
composition of helices orV particles. A vast number of fun
damental problems and applications~waveguide and resona
tor structures, antenna substrates, etc.! are emerging from
theoretical and experimental works based on these comp
materials@4,5#.

Lakhtakia suggested to name media described initially
@4# as magnetostatically controlled bianisotropic materia
~MCBMs! @7#. Now the question arises, can one conceive
dual composite materials that may be namedelectrostatically
controlled bianisotropic materials~ECBMs!? In this paper
we will show that ECBMs may be realized based on elas
dynamic quasielectrostatic oscillations in piezoelectric re
nators with an aperture in a perfectly conducting surfa
When the ECBMs are conceptualized together with
MCBMs, we can assert that a general class of dual qua
tatically ~magnetostatically and electrostatically! controlled
bianisotropic materials exists.
PRE 581063-651X/98/58~6!/7959~6!/$15.00
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II. CURL-FREE-FIELD BIANISOTROPIC COMPOSITES:
A CONCEPT OF DUALITY

In a general case, the electromagnetic wave processe
media may be accompanied by vortexEc ,Hc and potential
Ep ,Hp electric and magnetic fields, so that the total fields
represented as

E5Ec1Ep , H5Hc1Hp , ~1!

where

Ep52“f, Hp52“c,
~2!

“•Ec50, “•Hc50.

The scalar electric and magnetic potentialsf and c are
caused by electric and magnetic charges, respectively, in
cordance with the Poisson equation~the Coulomb gauge! @8#.

The quasistatic~potential! wave propagation may tak
place in media. These potential waves are due to short-le
interactions between adjacent polarization vectors~magneto-
static waves in ferromagnetics, elastodynamic quasielec
static waves in piezoelectrics! or due to Coulomb interaction
between the mobile charges~space-charge waves!. Barybin
characterized such media with potential-wave propagatio
active polarized media@9#. In the classical description, on
of the main reasons why a medium can support the propa
tion of potential waves arises from the kinematics of p
ticles. There are, in particular, ac magnetization motion
ferromagnetics@10,11# or the particle displacement in piezo
electrics@12,13#. Due to the mechanical processes, we ha
additional ~in comparison to the energy balance in ‘‘pure
electromagnetic waves! mechanisms of storage and exchan
of energy. In nature, we have quasimagnetostatic (“3H
.0) or quasielectrostatic (“3E.0) waves. Thus the
potential-wave propagation in active polarized media is
companied by curl fields. There are curl electric field
quasimagnetostatic waves in ferromagnetics and curl m
netic field in quasielectrostatic waves in piezoelectrics. T
quasistatic-wave propagation may also be accompanied
surface currents: electric surface current in quasimagn
static waves and magnetic surface current in quasielec
static waves. Obviously, bulk currents cannot take pla
since a quasistatic description inside the current region
impossible. In our further consideration we will use the fo
lowing terms: magnetostatic waves~MSWs! for potential
7959 © 1998 The American Physical Society
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7960 PRE 58E. O. KAMENETSKII
waves in ferromagnetics and electrostatic waves~ESWs! for
potential waves in piezoelectrics.

Let us consider a small ferromagnetic resonator with
special-form region of surface metallization. When qua
static oscillations due to the MSW process take place,
resonator may have properties of a bianisotropic part
with the curl-free fields outside the particle. Every bianis
tropic particle is a glued pair of two~magnetic and electric!
dipoles: The magnetic dipole is due to the ferrite body a
the electric dipole is due to the metalization region. Biani
tropic materials composed of MSW ferromagnetic resona
were described and analyzed in@4,5#. The theoretical analy-
sis was based on the theory of excitation of MS
waveguides@14#.

Now let us consider a small piezoelectric resonator w
an aperture in a perfectly conducting surface. We can as
a priori that when quasistatic oscillations due to the ES
process take place, the resonator may have properties o
anisotropic particle with a glued pair of two dipoles. In th
case, the electric dipole is due to the piezoelectric body
the magnetic dipole is due to an aperture in a metallic scre

Our conceptual analysis enables us to represent two t
of dual quasistatic~magnetostatic and electrostatic! bianiso-
tropic particles. In Fig. 1 we can see magnetostatic bian
tropic particles based on ferromagnetic resonators with
face metallic strips@Figs. 1~a! and 1~b!# @4,5# in comparison
with electrostatic bianisotropic particles based on piezoe
tric resonators with apertures in metallic screens@Figs. 1~c!
and 1~d!#. One can compose two types of dual curl-free-fie
bianisotropic materials: the MCBMs and the ECBMs. Thu
careful analysis has to be made to show that electrostatic
controlled bianisotropic particles may be realized.

III. ELECTROSTATICALLY CONTROLLED
BIANISOTROPIC PARTICLES

A piezoelectric resonator with an aperture in a perfec
conducting surface is considered as a bianisotropic part
Because of quasielectrostatic~short-wavelength! oscillations
in a piezoelectric resonator, we can distinguish the intrin
quasielectrostatic mode fields and the external~given! fields.
Induced electricp and magneticm dipole moments are re
lated to the external electricEext and magneticHext fields as

FIG. 1. Dual bianisotropic particles.
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p5aee•Eext1aem•Hext, m5ame•Eext1amm•Hext.
~3!

To obtain the dyadic polarizabilitiesaee, aem, ame, and
amm one has to solve a problem of excitation of a piezoel
tric resonator by the external~given! fields.

Piezoelectric resonators with apertures are character
as structures with complex geometries. One of the ways
solve the excitation problem is a decomposition of a reso
tor by waveguide sections and an analysis of excitation
these waveguide sections. In this paper we consider a pi
electric resonator depicted in Fig. 1~c! as a composition of
piezoelectric-waveguide sections. A similar decomposit
was used in an analysis of bianisotropic particles in MCB
@4#. So the problem is reduced to an analysis of mode e
tation in piezoelectric waveguides by the external elec
and magnetic fields. When the problem of the piezoelec
waveguide excitation by the external fields is solved, furth
generalization for piezoelectric resonators may be realize

IV. MODE EXCITATION IN PIEZOELECTRIC
WAVEGUIDES BY THE EXTERNAL FIELDS

In different types of waveguides described in the literatu
~electromagnetic @15,16#, MSW @10,11#, and acoustic
@12,13#!, normal mode excitation is analyzed as excitation
the external ~given! electric and magnetic currents an
charges. For some waveguide problems, another type of
citation may be considered however. There is mode exc
tion due to the external~given! electric and magnetic fields
This kind of excitation problem is especially important in o
case when induced dipole moments of a bianisotropic p
ticle are defined. Quasistatically controlled oscillating pr
cesses in bianisotropic particles of the MCBMs or ECBM
have scales of space variations much less than the co
sponding scales of the external electric and magnetic fie
This makes it possible to distinguish the intrinsic quasista
mode fields and the external~given! electric and magnetic
fields.

To solve an excitation problem in a waveguide, one c
use a complete functional basis of eigenmodes of a non
cited waveguide. To obtain this functional basis, a corr
eigenvalue problem has to be set up. Let steady-state t
harmonic (eivt) field variations along the longitudinalz axis
of a multilayered piezoelectric waveguide be described
the factore2gz. Based on the electro-magnetic and acous
field equations and piezoelectric constitutive relatio
@12,13#, one can write the eigenvalue equation for eve
layer j of a piezoelectric waveguide. In the quasielectrosta
approximation (E52“f), two forms of the eigenvalue
equation in a piezoelectric waveguide are possible. One f
may be written as

~@G'#~ j !2g@R1# !@V#~ j !50, ~4!

where @G'# is the differential-matrix operator and@R1# is
the matrix coefficient,
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@G'#5S 2 ivr

“̄s
~' !

0
0

“̄
•

~' !

2 ivSE:
0

iv~eT!21~d: !

0
ivd•“

0
iv“'

0
0

2 iv“'•

iv~eT!21
D ,

~5!

@R1#5S 0

“̄s
~ i !

0
0

“̄
•

~ i !

0
0
0

0
0
0

ivez•

0
0

2 ivez•

0
D , ~6!

and @V# is the vector function

@V#5S v
T
f
D
D . ~7!

Here ez is the unit vector along the axisz and “' and
“'• are the transverse gradient and divergence, respecti
In Eqs.~5!–~7! we used designations from Auld’s book@12#:
S is the strain field,T is the stress field,v is the particle
velocity, andd is the piezoelectric strain constant. Other de
ignations can be found in@12#. Transverse and longitudina
parts of the divergence of stress“̄ (')

•T and “̄

(i)
•T and

transverse and longitudinal parts of the symmetric grad
of the particle velocity“̄s

(')v and“̄s
(i)v are defined, respec

tively, by the matrix coefficients~in Auld’s notation@12#!

“̄
•

~' !5F ]

]x
0 0 0 0

]

]y

0
]

]y
0 0 0

]

]x

0 0 0
]

]y

]

]x
0

G ,

“̄
•

~ i !5F 0
0
0

0
0
0

0
0
1

0
1
0

1
0
0

0
0
0
G , ~8!

“̄s
~' !53

]

]x
0 0

0
]

]y
0

0 0 0

0 0
]

]y

0 0
]

]x

]

]y

]

]x
0

4 , ¹̄s
~ i !5F 0

0
0
0
1
0

0
0
0
1
0
0

0
0
1
0
0
0

G . ~9!

Together with the form~4!, another form of the eigen
value equation is possible
ly.

-

nt

~@M'#~ j !2g@R2# !@U#~ j !50, ~10!

where @M'# is the differential-matrix operator,@R2# is the
matrix coefficient

@M'#5S 2 ivr

“̄s
~' !

0
0

“̄
•

~' !

2 ivSE:
ivd:

0

0
2 ivd•
iveT

•

“'3

0
0

2“'3

0
D ,

@R2#5S 0

“̄s
~ i !

0
0

“̄
•

~ i !

0
0
0

0
0
0

ez3

0
0

2ez3

0
D , ~11!

and @U# is the vector function

@U#5S v
T
E
H
D . ~12!

Here“'3 is the transverse curl.
We consider Eqs.~4! and~10! as the eigenvalue equation

of the main problem and will associate with these equati
the eigenvalue equations of the conjugate problem

~@G̃'#~ j !2g̃@R1# !@Ṽ#~ j !50 ~13!

and

~@M̃'#~ j !2g̃@R2# !@Ũ#~ j !50. ~14!

Now we define the following scalar products on the wav
guide cross sections:

E
S
~@G'#@V# !+@Ṽ#* ds

5E
S
$~2 ivrv1“̄

~' !
•T!• ṽ* 1~“̄s

~' !v2 ivSE:T

1ivd•“f!:T̃*2iv~“'•D!f̃* 1@2 iv~eT!21~d:T!

1 iv“'f1 iv~eT!21D#•D̃* %ds ~15!

and

E
S
~@M'#@U# !+@Ũ#* ds5E

S
@~2 ivrv1“̄

~' !
•T!• ṽ*

1~“̄s
~' !v2 ivSE:T1 ivd•E!:T̃*

1~ ivd:T1iveT
•E2“'3H!•Ẽ*

1~“'3E!•H̃* #ds. ~16!

Based on integration by parts taking into account nec
sary vector and tensor identities@12#, one obtains from Eqs
~15! and ~16!
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E
Sj

~@G'#~ j !@V# !+@Ṽ#* ds5E
Sj

@V#+~@G̃'#~ j !@Ṽ# !* ds

1P1~@V#,@Ṽ#* ! ~17!

and

E
Sj

~@M'#~ j !@U# !+@Ũ#* ds5E
Sj

@U#+~@M̃'#~ j !@Ũ# !* ds

1P2~@U#,@Ũ#* !, ~18!

where for lossless media

@G̃'#~ j !52@G'#~ j !, ~19!

@M̃'#~ j !52@M'#~ j !. ~20!

P1 and P2 in Eqs. ~17! and ~18! are adjoint bilinear forms.
Relations~19! and~20! show that functions@Ṽ# and@Ũ# are
also ~together with functions@V# and @U#! included in the
domains of definition of operators@G'# and @M'#, respec-
tively.

For a regular nonexcited waveguide, one can repre
functions@V#,@Ṽ# and @U#,@Ũ#

@V#5@V̂#e2gz, @Ṽ#5@ Ṽ̂#e2g̃z, ~21!

@U#5@Û#e2gz, @Ũ#5@ Ũ̂#e2g̃z, ~22!

where the functions with carets describe the field distribut
over the waveguide cross section~the membrane functions!
@12,13#.

Let gm , @V̂m#, and@Ûm# be, respectively, the propagatio
constant and the fields of modem. We assume also thatg̃n ,

@ Ṽ̂n#, and @ Ũ̂n# are, respectively, the propagation consta
and the fields of moden. On the basis of homogeneous ele
tromagnetic and acoustic boundary conditions and condit
at infinity, one obtains zero adjoint bilinear forms in Eq
~17! and ~18!. As a result, we have the mode orthogonal
relation

~gm1g̃n* !Nmn50. ~23!

For gm1g̃n* Þ0, two modes are orthogonal. If, howeve
gm1g̃n* 50, we will mark n5m̃ and consider this mode a
the conjugate to modem. For conjugate modes, we have a
expression for the norm@12#

Nm[Nmm̃5(
j
E

Sj

~2 v̂m̃
*
•T̂m2 v̂m•T̂m̃

* 1 ivD̂mf̂m̃
*

2 ivD̂m̃
* f̂m!•ezds

5(
j
E

Sj

~2 v̂m̃
*
•T̂m2 v̂m•T̂m̃

* 1Êm3Ĥm̃
*

1Êm̃
* 3Ĥm!•ezds. ~24!

We have obtained the mode orthogonality relations ba
on a rigorous statement of eigenvalue problems in piezoe
nt

n

t
-
s

.

d
c-

tric waveguides. Relations~23! and ~24! are correct for
propagating, evanescent~reactive!, and complex modes. We
will use these relations to solve the problems of mode ex
tation by the external electric and magnetic fields.

An analysis of excitation of piezoelectric-waveguid
modes by the external electric field is based on the solu
of an inhomogeneous equation

@G#@V#5@Q#, ~25!

where@G#5@G'#1(]/]z)@R1# and @Q# is the vector func-
tion of sources. In our case of mode excitation by the ex
nal fields,@Q# has the form

@Q#5S 0
0
0

ivEexc
D , ~26!

where Eexc is the exciting electric field. This field differs
from the external electric fieldEext in Eq. ~3! because of the
depolarizing effects. Finding the components of the depo
izing tensor represents a separate electrostatic problem.

We will find a solution of Eq.~25! with the use of a
complete set of orthonormal membrane eigenfunctions

V~ j !5 (
m51

`

am~z!V̂m
~ j ! . ~27!

Based on this representation, taking into account the
thogonality relations~23! and~24!, one obtains the excitation
equation for modem using Galerkin’s method@17,18#

dam~z!

dz
1gmam~z!5

iv

Nm
(

j
E

Sj

Eexc
•~D̂m̃

~ j !!* ds. ~28!

An analysis of mode excitation based on the operator@G#
and the vector-function@V# cannot be extended to a case
mode excitation by the external magnetic field. For this ty
of source, we have to use the operator@M #5@M'#
1(]/]z)@R2# and the vector function@U#. One can see from
the orthogonality relations~23! and~24! that only transverse
components of the electric and magnetic mode fields form
complete set of the orthonormal eigenfunctions. Thus
have

E'
~ j !5 (

m51

`

am~z!Êm'

~ j ! ,

~29!

H'
~ j !5 (

m51

`

am~z!Ĥm'

~ j ! .

Since the fieldE is the potential field, the coefficientsam(z)
in Eq. ~29! are the same as the coefficients in Eq.~27!. It
becomes clear from the following consideration. Because
Eq. ~27!, we have

f~ j !5 (
m51

`

am~z!f̂m
~ j ! ~30!

and therefore
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E'
~ j !52 (

m51

`

am~z!“'f̂m
~ j !5 (

m51

`

am~z!Êm'

~ j ! . ~31!

Let an aperture in a metallic screen of a piezoelec
waveguide take place~Fig. 2!. In this case, waveguide eigen
modes are accompanied by surface magnetic currentsj s

(M )

@16#. For modem̃, for example, we can write

nc3~Em̃
~1c!2Em̃

~2c!!52 j sm̃

~M ! . ~32!

Herenc is the external normal to contourC, the contour
on the waveguide cross section. The surface magnetic
rents are located on this contour~see Fig. 2!. In a piezoelec-
tric waveguide without dissipative losses we can write

nc3~Hm̃!c50. ~33!

We introduce a system of two fields@U1# and @U2#.
Without bulk sources we have

@M #@U1,2#5S @M'#1
]

]z
@R2# D @U1,2#50. ~34!

Based on Eq.~34! we have

E
Sj

$~@M'#@U1# !+@U2#* 1@U1#+~@M'#@U2# !* %ds

1E
Sj
H S ]

]z
@R2#@U1# D +@U2#*

1@U1#+S ]

]z
@R2#@U2#* D J ds50. ~35!

~Here we have omitted for simplicity the indexj for @M'#
and @U1,2#.!

Let the field@U1# be the required field. In the presence
the external magnetic field, the total magnetic field may
written as

Ĥ15 (
m51

`

am~z!Ĥm1Hext. ~36!

For the mode fieldHm5am(z)Ĥm , we have the boundary
condition nc3(Hm)c50. Let the field@U2# be the field of
modem̃ that satisfies the boundary conditions~32! and~33!.
Based on Eq.~34!, we have as a result the excitation equ
tion

dam~z!

dz
1gmam~z!5

1

Nm
E

C
Hext

•~ j sm̃

~M !!* dc. ~37!

FIG. 2. Piezoelectric waveguide structure.
c
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V. DYADIC POLARIZABILITIES OF PARTICLES

When a piezoelectric resonator with an aperture in a m
tallic screen is composed by piezoelectric waveguide s
tions, a problem arises concerning resolution of differen
equations~28! and ~37! in every waveguide section with
sewing together the fields on the boundaries between th
sections.

One of the main goals of this paper is to show physica
and mathematically that realization of bianisotropic partic
based on piezoelectric resonators is possible, in principle.
we will not describe here any algorithm to calculate t
fields in a resonator and will suppose that such calculati
have technological capability. When the fields are know
one can find an electric polarization in a piezoelectric a
obtain the dyadic polarizabilitiesaee andaem and, thus, the
induced electric dipole momentp @see ~3!# as a result of
integration of the electric polarization over the volume of
piezoelectric.

The dyadic polarizabilitiesame andamm @see Eq.~3!# are
found on the basis of integration of the surface magne
charge densityt (M ) along the aperture. The surface magne
charge density is related to the surface magnetic current
sity as

“s• j s
~M !5 ivt~M !, ~38!

where“s• is a surface divergence on the aperture. The s
face magnetic current density is defined as

nc3@~“f!~1 !2~“f!~2 !#5 j s
~M ! , ~39!

where (“f)(6) is a gradient of the potentialf on the slot
region above and below the contourC ~see Fig. 2!.

Based on piezoelectric resonators with an aperture,
anisotropic materials may be composed of randomly dist
uted particles or as a three-dimensional regular array of
ticles. In the latter case, the Lorenz-Lorentz theory may
used to characterize material parameters of artificial bian
tropic crystals@6,19#.

VI. CONCLUSION

In this paper we have shown that together with recen
conceptualized magnetostatically controlled bianisotro
materials, electrostatically controlled bianisotropic materi
can also be introduced. So we have dual curl-free-field
anisotropic composite materials.

Our analysis of dyadic polarizabilities of a piezoelect
bianisotropic particle was mainly based on the theory of
citation of piezoelectric waveguides by the external elec
and magnetic fields. It was supposed that when the theor
waveguide excitation is obtained, further calculations of
fields in a resonator have technological capability. To ma
facture the ECBMs, well-developed technology of piezoel
tric devices ~for example, planar technology of surfac
acoustic-wave filters@20#! may be successfully used.

The MCBMs and the ECBMs are compositions of micr
scopic oscillators and the quantum mechanical models
be applicable to describe dynamical perturbations of a s
tem of these oscillations by an external action. Some disc
sions about the use of the quantum mechanical models
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banisotropic particles are adduced in@21#. One can distin-
guish geometrically symmerical bianisotropic particles@Figs.
1~a! and 1~c!# and bianisotropic particles with symmetr
breaking ~enantiomers! @Figs. 1~b! and 1~d!#. So the main
e-

pt

i-
le
.

,
ag

s

subject concerns the possibility to use a symmetry analys
define energetic levels of every bianisotropic particle, sim
to an analysis applied for the classification of molecu
terms.
og
,

f

s
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